Abstract

The integration of chips in the third dimension has been explored to address various physical and system level limitations currently undermining chip performance. In this paper, we present a comprehensive analysis of the electrical properties of through silicon vias and microconnects with an emphasis on single via characteristics as well as inter-TSV capacitive and inductive coupling in the presence of either a neighboring ground tap or a grounded substrate back plane. We also analyze the impact of technology scaling on TSV electrical parasitics, and investigate the power and delay trend in 3-D interstratum IO drivers with those of global wire in 2-D circuits over various technology nodes. We estimate the global wire length necessary to produce an equivalent 3-D IO delay, a metric useful in early stage design tools for 3D floorplanning that considers the electrical characteristics of 3D connections with TSVs and microconnects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.