Abstract

A thieno[3,4-b]thiophene and benzodithiophene copolymer PTB7, which has received much attention as a donor material of organic solar cells, is electrically characterized using a field-effect transistor (FET) configuration. The hole mobility of PTB7 FETs is ∼2.0 × 10−3 cm2·V−1·s−1, which is independent of annealing temperature, while the threshold voltage shifts towards a negative value with increasing annealing temperature. This is due to the increase in the density of deep trapping states with thermal annealing. The threshold voltage also shifts towards a negative value after aging, indicating that additional deep trapping states are generated in PTB7 thin films even at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.