Abstract

Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this paper, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field, the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H2O)2 cluster. Below the critical electric field, it is observed that, with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical π-style orbital to unusual σ-style double H-bonding orbital). We also show that, beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. Overall, these results help shed new insight on the effects of electric fields on water whisker formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call