Abstract
IR drop impacts circuit delay time and reliability. The IR drop comes from unexpected peak current (Ipeak) consumption. This paper proposes an efficient methodology with an in-house EDA tool named IPR to analyze and reduce the Ipeak. IPR adopts dual threshold voltages (Vth) and gate resizing technique; it also lowers the short, dynamic, and static leakage current consumption without degrading the system performance. IPR consists of two parts: Ipeak analysis and Ipeak alleviation processes. Nonlinear static/dynamic timing analysis techniques, in cooperation with dual Vth cell library, provides two kinds of accurate Ipeak calculation methods used in IPR. Using the incremental timing analysis, the Ipeak processing time can be accelerated. Demonstration of the ISCAS89 benchmark circuits shows that IPR can reduce Ipeak by 39%, power consumption by 14%, and delay time by 19%. In addition, it provides 334 times faster computation with 2% and 10% estimation errors of the Ipeak and power in gate-level, respectively, as compared to circuit level simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.