Abstract
Multiple stressors, including climate change, eutrophication, and pesticide contamination, are significant drivers of the decline in lake zoobenthos. Zoobenthos play a crucial role in aquatic ecosystems, impacting energy dynamics, nutrient cycling, and sediment degradation. However, these stressors have led to a decrease in the abundance and diversity of zoobenthos, resulting in notable changes in species composition and structure. Eutrophication typically increases zoobenthos abundance while reducing taxonomic diversity. Climate change, such as warming and heatwaves, also affects the zoobenthos community structure, with different species exhibiting varying levels of adaptability to temperature changes. Additionally, pesticides like imidacloprid have negative effects on the survival and growth of zoobenthos. However, the interactions between imidacloprid and other stressors remain understudied. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes. We combined nutrient loading, sustained warming, and the imidacloprid pesticide to test how these stressors interactively influence the survival and community of zoobenthos. The experimental results demonstrate that elevated temperatures have a significant impact on aquatic benthic organisms under different treatment conditions. The increase in temperature led to a notable rise in species richness and α-diversity, primarily attributed to the stimulation of metabolic activities in zoobenthos, promoting their growth and reproduction. This finding underscores the potential influence of climate change on aquatic benthic ecosystems, particularly in terms of its promoting effect on α-diversity. However, it is essential to note that elevated temperatures also reduced β-diversity among different sites, implying a potential trend toward homogenization in zoobenthos communities under warmer conditions. Moreover, this study revealed the interactive effects of multiple stressors on the diversity of aquatic benthic communities. Specifically, the pesticide imidacloprid’s impact on zoobenthos is not isolated but demonstrates complex effects within various treatment interactions. In the presence of both temperature elevation and the addition of imidacloprid, the presence of imidacloprid appears to counteract the adverse effects of temperature elevation, resulting in increased species diversity. However, when imidacloprid coincides with nutrient input, it significantly affects α-diversity negatively. These findings highlight the complexity of zoobenthos responses to multiple stressors and how these factors influence both α-diversity and β-diversity. They provide valuable insights for further research on the conservation and management of ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.