Abstract

A continuing challenge for scientists is to understand how multiple interactive stressor factors affect biological interactions, and subsequently, ecosystems–in ways not easily predicted by single factor studies. In this review, we have compiled and analyzed available research on how multiple stressor pairs composed of temperature (T), light (L), ultraviolet radiation (UVR), nutrients (Nut), carbon dioxide (CO2), dissolved organic carbon (DOC), and salinity (S) impact the stoichiometry of autotrophs which in turn shapes the nature of their ecological interactions within lower trophic levels in streams, lakes and oceans. Our analysis from 66 studies with 320 observations of 11 stressor pairs, demonstrated that non-additive responses predominate across aquatic ecosystems and their net interactive effect depends on the stressor pair at play. Across systems, there was a prevalence of antagonism in freshwater (60–67% vs. 47% in marine systems) compared to marine systems where synergism was more common (49% vs. 33–40% in freshwaters). While the lack of data impeded comparisons among all of the paired stressors, we found pronounced system differences for the L × Nut interactions. For this interaction, our data for C:P and N:P is consistent with the initial hypothesis that the interaction was primarily synergistic in the oceans, but not for C:N. Our study found a wide range of variability in the net effects of the interactions in freshwater systems, with some observations supporting antagonism, and others synergism. Our results suggest that the nature of the stressor pairs interactions on C:N:P ratios regulates the “continuum” commensalistic-competitive-predatory relationship between algae and bacteria and the food chain efficiency at the algae-herbivore interface. Overall, the scarce number of studies with even more fewer replications in each study that are available for freshwater systems have prevented a more detailed, insightful analysis. Our findings highlighting the preponderance of antagonistic and synergistic effects of stressor interactions in aquatic ecosystems—effects that play key roles in the functioning of feedback loops in the biosphere—also stress the need for further studies evaluating the interactive effects of multiple stressors in a rapidly changing world facing a confluence of tipping points.

Highlights

  • A paramount theme in the scientific and political arena is to better understand and predict the impact of human activities on the functioning of ecosystems, such as modification of biogeochemical cycles, climate change or species harvest and biodiversity loss (Carpenter et al, 2008; Cheung et al, 2009)

  • While numerous studies have documented how environmental conditions affect the elemental composition of primary producers, there is far less information on the combined effects of multiple global stressors, and even fewer studies have examined the role of stoichiometry on how multiple interactive effects impact ecological interactions

  • We hierarchically examine progress in these areas of ecological interactions and stoichiometry by answering several fundamentally related questions: What are the interactive effects of multiple stressors on the elemental composition of primary producers in aquatic ecosystems? Are there habitat differences in the prevalence of synergistic, antagonistic or additive responses? To address these questions, we will first compile field and laboratory investigations that examine the effect of paired stressors on the elemental stoichiometry of autotrophs in aquatic ecosystems and classify them as synergistic or antagonistic according to a modification of Allgeier et al.’s interaction effect index (IEI) (Allgeier et al, 2011), which compares the cumulative mean size effect of two paired stressors with the sum of their individual effects

Read more

Summary

Introduction

A paramount theme in the scientific and political arena is to better understand and predict the impact of human activities on the functioning of ecosystems, such as modification of biogeochemical cycles, climate change or species harvest and biodiversity loss (Carpenter et al, 2008; Cheung et al, 2009).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call