Abstract

In the study, we investigate the numerical investigation of variable viscous dissipation and source of heat or sink in mixed convective stagnation point flow the unsteady non-homogeneous nanofluid under the induced magnetic parameter. Considering similarity conversions, the governing of fundamental boundary of layer non-linear PDEs are transformed to equations of the non-linear differential type that, under appropriate boundary conditions, are numerically solved, and the MATLAB function bvp4c is considered to solve the resulting system. The obtained results are calculated numerically for non-dimensional velocity, temperature, and volume fraction and displayed graphically. Further, numbers of Nusselt and Sherwood and local Skin of friction have been produced and displayed by graphs. A comparison with previous results obtained neglecting the new parameters has been made to show the impact of new external parametes on the phenomneon. The obtained findings agree with those introduced by others if the magnetic field and viscous dissipation are neglected. The results obtained have an important applications in diverse field as chemical engineering, agriculture, medical science, and industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.