Abstract

In this study, magnetohydrodynamic effects on the mixed convection flow of nanofluid particles, namely, Cu (copper) and Al2O3 (alumina) near a stagnation region over a vertical plate in the presence of viscous dissipation is investigated. The governing equations of the nanofluid flow model proposed by Tiwari and Das (Int. J. Heat Mass Transfer, 50, 2002 (2007). doi:10.1016/j.ijheatmasstransfer.2006.09.034) are converted into a dimensionless nonlinear system of ordinary differential equations by using the similarity transformation. The solution of the resulting equations is obtained numerically by using a very efficient implicit scheme known as the Keller box method. A comparison with previous studies is shown in tabular form and excellent agreement is found. The effects of pertinent parameters like magnetic parameter M, Eckert number Ec, and volume fraction parameter ϕ on velocity, temperature, skin friction coefficient, and local Nusselt number with fixed value of Prandtl number Pr = 6.2 are shown graphically and discussed. These results show that the skin friction coefficient increases for both nanoparticles in assisting and opposing flow cases because of increasing absolute values of M and Ec, on the other hand heat transfer rate is enhanced in the opposing flow case and reduced in the assisting flow case. The values of skin friction coefficient for both nanoparticles, namely, Cu and Al2O3 increase with the increase in volume fraction parameter ϕ in both assisting and opposing flow cases and Cu has a higher value than Al2O3. The same behavior is observed for local Nusselt number in opposing flow, but in assisting flow the value of local Nusselt number decreases with the increase of ϕ in the presence of magnetic and viscous dissipation effects and Cu has a smaller value than Al2O3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call