Abstract

This study investigates the effect of traffic signal coordination on emissions and compares it with their effects on operational performance measures of delay and stops. Various platoon ratios are obtained by simulating cycle lengths and offsets. Our results indicate that the impact of the cycle length on delay is more significant than those on stops and emissions for under-saturation traffic conditions. Given a fixed cycle length, increasing the platoon ratio can reduce delay, stops, and emissions, with reduction in emissions being correlated with stops than delay. The effect on emissions from the platoon arrival with respect to the onset of green or red indication is identified. With the same cycle length and platoon ratio, the early arrival situation, when the leading vehicles of a platoon encounters the red signal, can generate more emissions than are associated with late platoon arrival, when the last few vehicles in a platoon are stopped at the intersection by the onset of the red signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.