Abstract
Microstructural control in thin‐layer multilayer ceramic capacitors (MLCCs) is one of the present day challenges for increasing capacitive volumetric efficiency and high voltage dielectric properties. The present paper continues a series of investigations aimed at engineering the stability of ultra‐thin Ni layers in base‐metal electrode MLCCs. A kinetic approach based on the control of sintering profiles is found to not only prevent Ni electrode discontinuities, but also to significantly improve the interfacial electrical properties. Increasing sintering heating rates from 200 to 3000°C/h leads to a decrease in its temperature dependence of capacitance. Faster heating rates also reduce the BaTiO3 grain size, which is beneficial to the reliability of multilayer capacitors. A direct correlation between heating rates, the thickness of an interfacial (Ni, Ba, and Ti) alloy reaction layer and the interfacial contact resistance has been observed. The decrease in the alloy layer thickness at high heating rates leads to an increased effective Schottky barrier height between the dielectric and electrode toward its theoretical value of 1.25 eV for pure Ni–BaTiO3 interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.