Abstract

In this study, porous calcium silicate (CaSiO3) scaffolds were prepared by 3D gel-printing (3DGP) method and Fe3O4 water-based magnetic fluids (WMFs) were prepared by phacoemulsification compound chemical coprecipitation method. Fe3O4 WMFs were coated on CaSiO3 scaffolds surface to prepare Fe3O4/CaSiO3 composite scaffolds. The effect of WMFs with different Fe3O4 concentrations on porous CaSiO3 scaffolds was studied. The composition and morphological characteristics of porous scaffolds were analyzed by using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis. The magnetic properties were tested by vibrating sample magnetometer (VSM). The stability of Fe3O4 WMFs coatings and the degradability of composite scaffolds were tested by immersing them in simulated body fluid (SBF). The results show that when Fe3O4 concentration was 5.4% (w/v), the composite scaffolds had the highest saturation magnetization of 69.6 emu/g and the best stability in dynamic SBF. It is obviously that Fe3O4 WMFs coatings can be used for bone tissue engineering scaffolds repairing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.