Abstract

Road transportation is one of the major sources of greenhouse gas emissions. To reduce energy consumption and alleviate this environmental problem, this study aims to develop an eco-routing algorithm for navigation systems. Considering that both fuel consumption and travel time are important factors when planning a trip, the proposed routing algorithm finds a path that consumes the minimum amount of gasoline while ensuring that the travel time satisfies a specified travel time budget and an on-time arrival probability. We first develop link-based fuel consumption models based on vehicle dynamics, and then the Lagrangian-relaxation-based heuristic approach is proposed to efficiently solve this NP-hard problem. The performance of the proposed eco-routing strategy is verified in a large-scale network with real travel time and fuel consumption data. Specifically, a sensitivity analysis of fuel consumption reduction for travel demand and travel time buffer is discussed in our simulation study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.