Abstract
In the deregulated energy market environment, small-scale peer-to-peer (P2P) energy trading can increase the distributed photovoltaic power generation consumption and promote local energy balance. However, it also increases the possibility of security constraints violations during the operation of the utility grid. To solve physical network congestion caused by distributed P2P energy trading, we propose a method that considers the time sequence of P2P energy trading based on a continuous double auction (CDA) mechanism. In addition, to make full use of the users’ flexibility to solve the network congestion, a two-tier market (P2P energy market and ancillary service market) coordination mechanism is proposed. The congestion management model includes two parts. One is congestion responsibility determination and congestion cost allocation in the P2P energy market, and the other is flexible services purchasing in the ancillary service market for minimizing congestion costs. The cost and benefit constraints are specially added in the congestion management model to reduce the economic loss of the grid and users. The proposed method is tested on 11-bus and IEEE 33-bus radial distribution systems to illustrate the effectiveness and scalability of this method. The simulation results show that the proposed mechanism and model effectively perform congestion management considering distributed P2P energy trading, and the results are profitable to users participating in both markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.