Abstract

Abstract The application of stabilized finite element methods to model the vibration of elastic plates coupled with an acoustic fluid medium is considered. New stabilized methods based on the Hellinger-Reissner variational principle with a generalized least-squares modification are developed which yield improvement in accuracy over the Galerkin and Galerkin Generalized Least Squares (GGLS) finite element methods for both in vacuo and acoustic fluid-loaded Reissner-Mindlin plates. Through judicious selection of design parameters this formulation provides a consistent framework for enhancing the accuracy of mixed Reissner-Mindlin plate elements. Combined with stabilization methods for the acoustic fluid, the method presents a new framework for accurate modeling of acoustic fluid-loaded structures. The technique of complex wave-number dispersion analysis is used to examine the accuracy of the discretized system in the representation of free-waves for fluid-loaded plates. The influence of different finite element approximations for the fluid-loaded plate system are examined and clarified. Improved methods are designed such that the finite element dispersion relations closely match each branch of the complex wavenumber loci for fluid-loaded plates. Comparisons of finite element dispersion relations demonstrate the superiority of the hybrid least-squares (HLS) plate elements combined with stabilized methods for the fluid over standard Galerkin methods with mixed interpolation and shear projection (MITC4) and GGLS methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.