Abstract
AbstractThe application of stabilized finite element methods to model the vibration of elastic plates coupled with an acoustic fluid medium is considered. A complex‐wavenumber dispersion analysis of acoustic fluid interaction with Reissner–Mindlin plates is performed to quantify the accuracy of stabilized finite element methods for fluid‐loaded plates. Results demonstrate the improved accuracy of a recently developed hybrid least‐squares (HLS) plate element based on a modified Hellinger–Reissner functional, consistently combined with residual‐based methods for the acoustic fluid, compared to standard Galerkin and Galerkin gradient least‐squares plate elements. The technique of complex wavenumber dispersion analysis is used to examine the accuracy of the discretized system in the representation of free waves for fluid‐loaded plates. The influence of fluid and coupling matrices resulting from consistent implementation of pressure loading in the residual for the plate equation is examined and clarified for the different finite element approximations. Copyright © 2001 John Wiley & Sons, Ltd.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have