Abstract

Residual based finite element methods are developed for accurate time-harmonic wave response of the Reissner–Mindlin plate model. The methods are obtained by appending a generalized least-squares term to the mixed variational form for the finite element approximation. Through judicious selection of the design parameters inherent in the least-squares modification, this formulation provides a consistent and general framework for enhancing the wave accuracy of mixed plate elements. In this paper, the mixed interpolation technique of the well-established MITC4 element is used to develop a new mixed least-squares (MLS4) four-node quadrilateral plate element with improved wave accuracy. Complex wave number dispersion analysis is used to design optimal mesh parameters, which for a given wave angle, match both propagating and evanescent analytical wave numbers for Reissner–Mindlin plates. Numerical results demonstrates the significantly improved accuracy of the new MLS4 plate element compared to the underlying MITC4 element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.