Abstract

In this paper, a nonlinear analytical model is presented for the low-velocity collision impact of a sandwich plate with auxetic honeycomb-core layer. The auxetic feature of the honeycomb material is realized by mathematically expressing the effective material coefficients in terms of material property and cellular geometric parameters through a homogenization method. The higher order shear deformation theory, the von Kármán nonlinearity theory, and a modified Hertz contact law which accounts for the contact pressure distribution and indentation effect, are employed to establish the kinematic relations. The Newmark time integration scheme in conjunction with the direct iterative method is utilized to establish a solution procedure for the nonlinear dynamic governing equation. The verification of the presented model with the data in published literatures is carried out, followed by a series of numerical analyses for influences of cellular geometric features and impactor’s initial conditions (such as impactor’s initial velocity, mass, and nose curvature radius) on the nonlinear dynamic response. The results of numerical analyses show that the geometric features of the unit cell in the honeycomb-core and impactor’s initial conditions can cause significant influences on the nonlinear collision impact behaviors of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.