Abstract

Neurons in the arm and orofacial regions of the sensorimotor cortex in behaving monkeys display directional tuning of their activity during arm reaching and tongue protrusion, respectively. While studies on population activity abound for the arm motor cortex, how populations of neurons from the orofacial sensorimotor cortex represent direction has never been described. We therefore examined and compared the directional information contained in the spiking activity of populations of single neurons recorded simultaneously from chronically implanted microelectrode arrays in the orofacial primary motor (MIo, N = 345) and somatosensory (SIo, N = 336) cortices of monkeys (Macaca mulatta) as they protruded their tongue in different directions. Differential modulation to the direction of tongue protrusion was found in >60% of task-modulated neurons in MIo and SIo and was stronger in SIo (P < 0.05). Moreover, mutual information between direction and spiking was significantly higher in SIo compared with MIo at force onset and force offset (P < 0.01). Finally, the direction of tongue protrusion was accurately predicted on a trial-by-trial basis from the spiking activity of populations of MIo or SIo neurons by using a discrete decoder (P < 0.01). The highly reliable decoding was comparable between MIo and SIo neurons. However, the temporal evolution of the decoding performance differed between these two areas: MIo showed late-onset, fast-rising, and phasic performance, whereas SIo exhibited early-onset, slow-rising, and sustained performance. Overall, the results suggest that both MIo and SIo are highly involved in representing the direction of tongue protrusion but they differ in the amplitude and temporal processing of the directional information distributed across populations of neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call