Abstract
A new in vitro model of Huntington’s disease (HD) was developed via a direct reprogramming of dermal fibroblasts from HD patients into striatal neurons. A reprogramming into induced pluripotent stem (iPS) cells is obviated in the case of direct reprogramming, which thus yields neurons that preserve the epigenetic information inherent in cells of a particular donor and, consequently, the age-associated disease phenotype. A main histopathological feature of HD was reproduced in the new model; i.e., aggregates of mutant huntingtin accumulated in striatal neurons derived from a patient’s fibroblasts. Experiments with cultured neurons obtained via direct reprogramming make it possible to individually assess the progression of neuropathology and to implement a personalized approach to choosing the treatment strategy and drugs for therapy. The in vitro model of HD can be used in preclinical drug studies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have