Abstract
See related article, pages 648–656 The ability to generate induced pluripotent stem (iPS) cells from somatic cells by the overexpression of a limited number of stem cell-related genes has generated great excitement and interest in the biomedical research community including cardiovascular researchers. The pioneering study by Yamanaka and colleagues showing that overexpression of Oct3/4 , Sox2 , Klf4 , and c-Myc could reprogram mouse fibroblasts to a pluripotent state similar to that of embryonic stem (ES) cells opened major new avenues of research.1 This epigenetic reprogramming was rapidly extrapolated to the human system using either the same combination of reprogramming factors or a slightly different combination of transgenes ( OCT4 , NANOG , SOX2 , LIN28 ).2–4 Like embryonic stem (ES) cells, iPS cells can be used for basic developmental biology research and also as a cell source to generate theoretically unlimited quantities of desired cell types such as cardiomyocytes. Such differentiated cells types can be used in a wide range of basic research studies and potentially in clinical applications, which not only include cellular therapies but also drug discovery and safety testing. One appealing aspect of human iPS cells compared to human ES cells is that they can be more readily generated without specialized expertise and access to human embryos, which also avoids the ethical challenges associated with human embryo research. Potentially the most powerful advantage of iPS cells over ES cells is that they can be generated from any patient to produce genetically identical pluripotent cells that can create human disease models or generate patient-specific cells for therapy. Already a number of iPS cell human disease models have been generated,5,6 and proof-of-principle iPS cellular therapies have been pioneered in mouse models.7–9 Despite the speed at which the iPS cell field is racing forward, we …
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.