Abstract

A numerical method has been developed to solve the steady and unsteady incompressible Navier-Stokes equations in a two-dimensional, curvilinear coordinate system. The solution procedure is based on the method of artificial compressibility and uses a third-order flux-difference splitting upwind differencing scheme for convective terms and second-order center difference for viscous terms. A time-accurate scheme for unsteady incompressible flows is achieved by using an implicit real time discretization and a dual-time approach, which introduces pseudo-unsteady terms into both the mass conservation equation and momentum equations. An efficient fully implicit algorithm LU-SGS, which was originally derived for the compressible Eulur and Navier-Stokes equations by Jameson and Toon [1], is developed for the pseudo-compressibility formulation of the two dimensional incompressible Navier-Stokes equations for both steady and unsteady flows. A variety of computed results are presented to validate the present scheme. Numerical solutions for steady flow in a square lid-driven cavity and over a backward facing step and for unsteady flow in a square driven cavity with an oscillating lid and in a circular tube with a smooth expansion are respectively presented and compared with experimental data or other numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.