Abstract
This study introduces an alkaline leaching technique for the simultaneous analysis of biogenic silica and aluminium in sediments. Measuring aluminium facilitates the discrimination between silica from the biogenic (BSiO2) and the non-biogenic fraction, because it originates almost solely from the lithogenic phase. The method was tested using fine-grained silicagel, standard clay minerals, artificial sediments, and natural samples ranging from fresh diatoms to aged sediment from different depositional settings. To determine the BSiO2 content, four different models each describing the dissolution curves, but of increasing complexity, were applied and for each different type of sample the optimum model was selected on the basis of F-test statistics. For mixtures of silicagel and clay minerals, the contribution of Si from the dissolution of clay was negligible compared to Si originating from silicagel. For natural samples with high clay content, complex dissolution curves were observed and single-phase first order dissolution was the exception. This deviation from `ideal' behavior could only be recognized because of high-resolution sampling, especially in the first 20 minutes of the experiment. For most of the samples, the distinction between the biogenic silica fraction and the silica originating from dissolution of clays could be made on the basis of the Si/Al ratios and reactivity constants of the dissolving phases calculated with the models. Clay minerals typically dissolve slowly at a Si/Al ratio close to 1–2, depending on the type of clay mineral. In contrast, biogenic silica displays a wide range of reactivities and Si/Al ratios. Fresh biogenic silica from the water column usually has a high reactivity and a low Al content. Aged biogenic silica from the sediments has a lower reactivity, but Si/Al ratios as low as 5 were found. The method as described here therefore presents an accurate method to analyze biogenic silica in marine sediments with a relatively high clay mineral content.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have