Abstract

A shale condensate gas reservoir with a high clay content and a high formation pressure was found in the Jurassic shale of the Dongyuemiao Member in the Fuxing area of the eastern Sichuan Basin. Reservoir characteristics and formation pressure have a significant influence on optimal development. The present study investigated the continental shale of the Dongyuemiao Member in Well F. The petrological properties, physical properties, and pore structure of the Dongyuemiao Member were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), N2 adsorption, and mercury intrusion porosimetry (MIP). The permeability stress sensitivity characteristics of the shale reservoirs are discussed based on the change in shale porosity and permeability under overburden pressure. The tested shale samples yielded total organic carbon (TOC) and S1 + S2 values ranging mainly from 1.0 wt.% to 1.5 wt.% and from 0.39 to 2.28 mg/g, respectively, which was in the high maturity stage of the thermal evolution of organic matter (OM). The shales of the Dongyuemiao Member were found to contain high average clay mineral contents (more than 50%) of calcite and quartz, as well as albite, pyrite, dolomite, and halite. The main developments were identified as silica-rich argillaceous shale lithofacies, argillaceous shale lithofacies, and mixed argillaceous shale lithofacies. The pores were found to mainly be plate-like and flake-like interlayer pores of clay minerals and OM pores with various shapes. The pore size was mainly concentrated below 110 nm, and the pore volume increment increased in flakes with pore diameter. The average porosity and permeability of shale were found to be 4.827% and 0.243 mD, respectively. Clay minerals and quartz are beneficial for improving the porosity and permeability of reservoirs, while carbonate minerals have the opposite effect. The permeability of the shale showed a negative exponential change with increasing effective stress under overburden pressure. When the effective confining pressure was greater than 20 MPa, the decline rate of the shale permeability decreased with increases in the effective stress. The higher the clay mineral and TOC content, the stronger the stress sensitivity of shale permeability. The higher the carbonate mineral content, the weaker the stress sensitivity of shale permeability. The porosity sensitivity exponent indicates that matrix pores and micro-fractures are both developed in the Dongyuemiao Member, and the development of internal fractures is the main factor in the strong stress sensitivity of the shale permeability in the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call