Abstract

A two-dimensional numerical model of the PLASCON™ plasma reactor is used to investigate the destruction of ozone-depleting substances in the reactor. The model includes electromagnetic, fluid dynamic and chemical kinetic phenomena. Calculated temperature, flow and species concentration fields within the plasma torch, the injection manifold and the reaction tube are presented for the case of the destruction of CFC-12 (CF2Cl2). Conversion of CFC-12 to CFC-13 (CF3Cl), a more stable ozone-depleting substance, is found to occur in the region close to the injection manifold, and to be unaffected by reaction tube geometry. CFC-13 is predicted to be the dominant ozone-depleting substance in the exhaust gas. The predictions of the model are found to be in good agreement with measurements of the exhaust gas composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.