Abstract

At present, there are many shortcomings in the discontinuity of wavelet threshold function and the constant threshold of different decomposition layers and the constant error it produced. The amplitude-frequency characteristics of wavelet filters are studied and analyzed by mathematical modeling. An improved wavelet threshold function with adjustable parameters is proposed. Particle swarm optimization (PSO) algorithm is used to find the optimal parameters of the improved threshold function in a background noise environment. The improved wavelet threshold function is combined with Bayesian threshold method to obtain the threshold based on Bayesian criterion, which makes the threshold adaptive in different layers and overcomes the shortcomings of fixed threshold. Finally, the speech signal with optimal wavelet coefficients is obtained after reconstruction. Compared with the traditional threshold function, Simulation results show that the improved threshold function achieves precise notch denoising, effectively retains the singularity and eigenvalues of the signal, and reduces the signal distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call