Abstract

The measurement of downhole engineering parameters is greatly disturbed by the working environment. Effective de-noising methods are required for processing logging-while-drilling (LWD) acquisition signals, in order to obtain downhole engineering parameters accurately and effectively. In this paper, a new de-noising method for measuring downhole engineering parameters was presented, based on a feedback method and a wavelet transform threshold function. Firstly, in view of the mutability and density of downhole engineering data, an improved wavelet threshold function was proposed to de-noise the signal, so as to overcome the shortcomings of data oscillation and deviation caused by the traditional threshold function. Secondly, due to the unknown true value, traditional single denoising effect evaluation cannot meet the requirements of quality evaluation very well. So the root mean square error (RMSE), signal-to-noise ratio (SNR), smoothness (R) and fusion indexs (F) are used as the evaluation parameters of the de-noising effect, which can determine the optimal wavelet decomposition scale and the best wavelet basis. Finally, the proposed method was verified based on the measured downhole data. The experimental results showed that the improved wavelet de-noising method could reduce all kinds of interferences in the LWD signal, providing reliable measurement for analyzing the working status of the drilling bit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call