Abstract

Abstract Static Random-access memory (SRAM) are useful structure blocks in operations like data storage, embedded operations, cache recollections, microprocessors. The circuits should retain larger impunity to noise voltages. So, the Stationary Noise Margin (SNM) of the circuits should be veritably high. Large SRAM arrays that are extensively used as cache memory in microprocessors and operation-specific integrated circuits can absorb a big portion of the chip area. Highly compact circuits like SRAM arrays are estimated to cover relatively 90% of the System on chip area within the coming years. To optimize the performance of similar chips, large arrays of fast SRAM help to speed up the system performance. As a result, numerous minimal-size SRAM cells are tightly packed making SRAM arrays the compact circuitry on a chip. In this work an attempt is made to design a 8 X 8 SRAM memory array along with different components like Write driver circuit, Pre-charge circuit, Row and Column Decoder. Different SRAM architectures such as 6T, 7T and 8T are designed and different parameters such as Static Noise Margin and power dissipated are measured and the best performing memory design has been selected. 8T design has been resulted with least power dissipation. Hence this cell is selected for designing the memory array. A schematic of 8 x 8 array is designed and the layout of single SRAM 8T is created and to complete the ASIC design flow, DRC is done and the pre and post simulation are compared and verified. The integrated SRAM is operated with an input voltage of 0 to 1.8V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.