Abstract

This paper presents a low-power multistage amplifier with a novel capacitor-multiplier frequency compensation (CMFC) technique. The proposed compensation strategy can allow the circuit to occupy less silicon area and to drive large capacitive loads more effectively. Moreover, smaller physical capacitance results in higher gain-bandwidth product (GBW) and improved transient responses. Furthermore, the capacitor multiplier stage (CMS) embedded in CMFC creates a left-half plane (LHP) zero, which boosts the phase margin and enhances the stability of the amplifier. Implemented in a commercial 0.5-μm CMOS technology and driving 500pF capacitive load, a three-stage CMFC amplifier achieves over 120dB gain, 1.699MHz GBW and 1.625V/μS average slew rate, while only dissipating 330μW under 3.3V supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.