Abstract

We have designed single-bit comparators and multi-bit flash analog-to-digital converters (ADCs) using three flavors of periodic comparators; one flavor uses a differential “quasi-one-junction” SQUID (DQOS) comparator, the second use a differential SQUID wheel comparator (DSW) and the third uses a symmetric differential SQUID wheel comparator (SDSW) with time-interleaved clocks. We have also developed a new performance analysis scheme that enables full reconstruction of input signal using a single-bit comparator. The signal is reconstructed based on multiple beat frequency measurements that track the position of the comparator thresholds in response to a dc offset to the input signal. In addition, to eliminate the frequency dependent distortions resulting from impedance mismatches over wide bandwidths, the signal and clock distribution network have been optimized using EM simulations. For distributing the clock signal to the multi-bit comparators, a 50 Ω coplanar transmission line has been designed. Test results for a 1-bit DSW comparator demonstrates a performance of 4.5 bits of resolution in Gray code for a beat frequency test using a 20 GHz input signal and 5.3 bits for 10 GHz input. 4 and 8-bit versions of the flash ADC with a DQOS comparator and a 3-bit time-interleaved ADC using the SDSW comparator have also been designed. The DQOS ADC has been tested up to 25 GHz input signal frequency with performance of 4.3 bits of resolution in Gray code for 19.7 GHz input signal. The time-interleaved ADC performance is 4.3 bits for a 15 GHz beat frequency test with an effective sampling rate of 30 GHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.