Abstract

The time-interleaved architecture permits the implementation of high-frequency analog-to-digital converters (ADCs) by multiplexing the output of several time-shifted low-frequency ADCs. An issue in the design of a time-interleaved ADC is the compensation of timing mismatch, which is the difference between the ideal and real sampling instants. In this paper, we propose a compensation method that, as opposite to existing approaches, does not assume that the input signal is band limited but assumes instead that it has a stationary known power spectrum. The compensation is then designed in a statistically optimal sense. This largely reduces the compensation order required to achieve a given reconstruction accuracy. Also, under the band-limited assumption, the proposed method achieves perfect reconstruction if no constraints are imposed on the order of the compensation. Simulation results show that a rough estimate of the input spectrum can be used without much performance loss, showing that an accurate knowledge of the input spectrum is not necessarily required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.