Abstract
A design of a new multiple-valued current-mode circuit for high-speed arithmetic systems is presented. The use of a differential logic circuit with dual-rail complementary inputs makes a signal-voltage swing small with a constant driving current, so that the delay of the circuit can be reduced. As an application to arithmetic systems, it is demonstrated that the operating speed of the radix-2 signed-digit (SD) adder based on multiple-valued current-mode differential logic is 1.3 times faster than that of the corresponding binary CMOS implementation at a 3.5 V supply voltage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have