Abstract
Residue arithmetic multiplier based on the radix-4 signed-digit arithmetic is presented. Conventional residue arithmetic circuits have been designed using binary number arithmetic system, but the carry propagation arises which limits the speed of arithmetic operations in residue modules. In this paper, two radix-4 signed-digit (SD) number representations, (-2,-1,0,1,2) and (-3,-2,-1,0,1,2,3), are introduced. The former is used for the input and output, and the latter for the inner arithmetic circuit of the presented multiplier. So that, by using integers 4/sup P/ and 4/sup P//spl plusmn/1 as moduli of residue number system (RNS), where p is a positive integer, both the partial product generating circuit and the circuit for sum of the partial products in the multiplier can be efficiently constructed based on the SD number representations. The module m addition, m=4/sup P/ or m=4/sup P//spl plusmn/1, can be performed by an SD adder or an end-around-carry SD adder with the multiple-valued circuits and the addition time is independent of the word length of operands. The modulo m multiplier can be compactly constructed using a binary modulo m SD adder tree based on the multiple-valued addition circuits, and consequently the module m multiplication is performed in O(log/sub 2/p) time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.