Abstract
Recently, solar power generation systems are more and more popular and widely used in grid connected power generation, intelligent buildings, and power supply in remote areas. For photovoltaic panels, due to the influence of factors such as light intensity and ambient temperature, their output voltage and current become uns, and the output voltage of a single photovoltaic panel is considerably low. As a result, Boost circuits are needed for voltage boosting. PID controller is commonly used for Boost converter because it can effectively control the controlled object according to the characteristics of the controlled object. However, when the controlled object is complex and variable, the appropriate parameters are hardly to be selected by experience, and the fixed controller parameters may lead to unexpected performances under different working conditions. Here, a genetic algorithm combined with BP neural network PID control (GA-BPPID) is proposed to improve both dynamic and anti-interference performances of Boost circuit by introducing the global optimization ability of genetic algorithm and the adaptive adjustment characteristics of BP neural network. System modelling and detailed controller design procedures are provided. Finally, the theoretical analysis and controller design are validated by simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.