Abstract

Modern manufacturing is not only more demanding on machining accuracy but also requires the equipment to have a better degree of wisdom. For PMSM control system, it generally uses traditional PID control method due to the control advantages of traditional PID control which are simple algorithm, strong bond, and high reliability. However, the actual industrial processes are often nonlinear, and many nonlinear systems have difficulties to determine the precise mathematical model, which causes PID controller to not achieve ideal control effect. Because BP neural network has arbitrary nonlinear express ability which can achieve the best combination of PID control through the study of system performance. Hence, the control accuracy, robustness, and adaptive capacity of the control system for permanent magnet synchronous motors are improved. Also, PMSM vector control model is established to be a controlled subject. The chapter proposes the advantages of PID control and BP neural network to develop BP neural network PID controller. By using double-layer neural network controller with three inputs and three outputs, and the input refers to deviation, input signal and system output. After correcting the weightings and adjusting the three parameters of PID controller, the purpose of eliminating transient error rapidly and reaching steady state can be achieved. The practical simulation results find that the proposed BP neural network PID controller has parameter self-tuning function, short system response time, no over shooting phenomenon, and stronger robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call