Abstract

Icy rainfall and snowfall in 2024 Spring Festival struck the high-speed railway catenary systems and caused serious traffic disruptions in central and eastern China. Deicing drones are an effective method in response to these freezing events due to their fast speed and high environmental tolerance. However, the large disaster-affected area and the large scale and complexity of catenary networks make deicing drone scheduling a very difficult problem. In this paper, we formulate two versions of deicing drone scheduling problem, one for single drone scheduling and the other for multiple drone scheduling. Unlike most existing vehicle/drone routing problems, our problem aims to minimize the total negative effect caused by the freezing events on train operations, which reflects the prime concern of the decision-maker and is highly complex. To efficiently solve the problem, we propose a reinforcement learning assisted memetic optimization algorithm, which integrates global mutation and a set of neighborhood search operators adaptively selected by deep reinforcement learning. Computational results on real-world problem instances demonstrate its significant performance advantages over selected popular optimization algorithms in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.