Abstract
Disasters in remote areas often cause damage to communication facilities, which presents significant challenges for rescue efforts. As flexible mobile devices, unmanned aerial vehicles (UAVs) can provide temporary network services to address this issue. This paper studies the use of UAVs as mobile base stations to offer offload computing services for disaster relief devices in affected areas. To ensure reliable communication between disaster relief devices and UAVs, we construct a multi-UAV-assisted mobile edge computing (MEC) system with the objective of minimizing system energy consumption. Inspired by swarm intelligence principles, we propose a multi-strategy optimizer (MSO) that defines various population search functions and employs superior neighborhood methods for population updates. Experimental results demonstrate that MSO achieves superior system energy efficiency and exhibits greater stability compared to several state-of-the-art swarm intelligence algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.