Abstract
Electronic health records (EHRs) are widely used in healthcare institutions worldwide, containing vast amounts of unstructured textual data. However, the sensitive nature of Protected Health Information (PHI) embedded within these records presents significant privacy challenges, necessitating robust de-identification techniques. This paper introduces a novel approach, leveraging a Bi-LSTM-CRF model to achieve accurate and reliable PHI de-identification, using the i2b2 dataset sourced from Harvard University. Unlike prior studies that often unify Bi-LSTM and CRF layers, our approach focuses on the individual design, optimization, and hyperparameter tuning of both the Bi-LSTM and CRF components, allowing for precise model performance improvements. This rigorous approach to architectural design and hyperparameter tuning, often underexplored in the existing literature, significantly enhances the model’s capacity for accurate PHI tag detection while preserving the essential clinical context. Comprehensive evaluations are conducted across 23 PHI categories, as defined by HIPAA, ensuring thorough security across critical domains. The optimized model achieves exceptional performance metrics, with a precision of 99%, recall of 98%, and F1-score of 98%, underscoring its effectiveness in balancing recall and precision. By enabling the de-identification of medical records, this research strengthens patient confidentiality, promotes compliance with privacy regulations, and facilitates safe data sharing for research and analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have