Abstract
The use of a static modulation coding scheme (MCS), such as 7, and resource keep probability (Prk) value, such as 0.8, was proven to be insufficient to achieve the best packet reception ratio (PRR) performance. Various adaptation techniques have been used in the following years. This work introduces a novel optimization algorithm approach called the fuzzy inference reinforcement learning (FIRL) sequence for adaptive parameter configuration in cellular vehicle-to-everything (C-V2X) mode-4 communication networks. This innovative method combines a Sugeno-type fuzzy inference system (FIS) control system with a Q-learning reinforcement learning algorithm to optimize the PRR as the key metric for overall network performance. The FIRL sequence generates adaptive configuration parameters for Prk and MCS index values each time the Long-Term Evolution (LTE) packet is generated. Simulation results demonstrate the effectiveness of this optimization algorithm approach, achieving up to a 169.83% improvement in performance compared to static baseline parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have