Abstract
The paper reports two quite general and user-friendly calculation codes (called TLD-MC and TLS-MC) for deconvolution and simulation, respectively, of thermoluminescence (TL) glow curves, which have been implemented using the well-known engineering computing software PTC Mathcad. An advantage of this commercial software is the flexibility and productivity in setting up tailored computations due to a natural math notation, an interactive calculation environment and the availability of advanced numerical methods. TLD-MC includes the majority of popular models used for TL glow-curve deconvolution (the user can easily implement additional models if necessary). The least-squares (Levenberg-Marquardt) optimisation of various analytical and even some non-analytical models is reasonably fast and the obtained figure-of-merit values are generally excellent. TLS-MC implements numerical solution of the original set of differential equations describing charge carrier dynamics involving arbitrary number of interactive electron and hole traps. The programs are freely available from the website http://www.physic.ut.ee/~kiisk/mcadapps.htm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.