Abstract

The suitability of the second derivative method for locating component peaks in complex thermoluminescence (TL) glow curves has been investigated in this work by considering both numerically simulated and experimental TL peaks. This technique is useful to acquire knowledge of the number of component peaks in a complex TL curve which in turn serves as a basic information before applying the deconvolution technique to the glow curve. To check the consistency of the results so obtained, we have also applied the first derivative technique to TL glow curves. It is well-known that kinetic order formalism fails for saturated TL peaks with heavy retrapping. Such peaks are usually broad and, to the best of our knowledge, have not yet been observed experimentally. The present derivative technique has been used to detect whether such broad peaks are truly single or not by considering a number of numerically simulated saturated glow curves with heavy retrapping where the conventional peak shape method fails. In all the cases considered here, the second derivative technique proves to be a potential candidate for estimating the number of peaks and their respective locations in a complex TL glow curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call