Abstract
Vitellogenins (Vtgs) are key yolk precursor proteins in fish, serving as critical indicators of gonadal maturation in females and reliable biomarkers for detecting xeno-oestrogenic pollution, particularly through their expression in juveniles or males. The vtg gene family comprises multiple subtypes that are species-specific, necessitating precise characterisation and quantification for effective use as biomarkers in studies on estrogenic endocrine-disrupting chemicals (EEDCs). In this study, we successfully cloned and characterised the full-length cDNAs of three vtg subtypes (vtgAa, vtgAb, and vtgC) from Scatophagus argus. Differential expression analysis revealed that vtgAb exhibited the highest responsiveness to 17α-ethynylestradiol (EE2) exposure, with a 3-fold increase in vivo at 10.0 μg/g EE2 and a 30-fold increase in vitro at 10−7 mol/L EE2. The expression patterns were dose- and time-dependent, with peak expression observed 72 h post-exposure. While in vivo assays indicated moderate upregulation, in vitro experiments demonstrated significantly higher expression, attributed to direct hepatocyte interaction with EE2. These findings confirm vtgAb as the most responsive subtype to oestrogen exposure in S. argus and highlight the species’ tolerance to EE2, as compared to more sensitive species like Danio rerio. This study shows the evolutionary conservation of vtg transcripts across teleost species and reinforces the importance of subtype-specific characterisation to advance their application as biomarkers for EEDCs, with significant implications for environmental monitoring and pollution regulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have