Abstract

In this letter, a semi-analytical current–voltage model for a negative capacitance field-effect transistor (NCFET) with a ferroelectric material ( i.e. , BaTiO3) is proposed. Surface potential ( $\psi _{\mathrm {S}})$ in the channel region is determined first by solving the Landau–Khalatnikov (LK) equation numerically with Poisson’s equation. Then, the drain–current is achieved based on the current continuity equation using $\psi _{\mathrm {S}}$ determined earlier. In addition, by introducing a fitting potential for a given drain–voltage, threshold voltage shift can be captured, resulting in accurate surface potential and drain–current at different gate voltages. We have verified our model using the technology computer-aided design (TCAD)-MATLAB simulation, and our model exhibits an excellent agreement to the simulation results. In addition, the impacts of the ferroelectric thickness and channel doping concentration on the device performance and hysteresis window of NCFET are thoroughly explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.