Abstract
In this work, we designed, simulated, and tested a complementary split ring resonator (CSRR) for the purpose of applying a strong and uniform microwave field for the manipulation of nitrogen vacancy (NV) ensembles. This structure was fabricated by etching two concentric rings on a flat metal film that was deposited on a printed circuit board. A metal transmission on the back plane was used as the feed line. The fluorescence collection efficiency was improved by about 2.5 times with the CSRR structure compared to that without CSRR. Furthermore, the maximum Rabi frequency could reach 11.3 MHz, and the Rabi frequency variation was smaller than 2.8% in an area of 250 × 75 μm. This could pave the way to achieving high-efficiency control of the quantum state for spin-based sensor applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have