Abstract

Abstract GaN has been grown using Si/N treatment growth by MOVPE on sapphire (0001) in a home-made vertical reactor. The growth was monitored by in situ laser reflectometry. The morphological, electrical and optical properties of GaN are investigated at all the growth stages. To this aim, the growth was interrupted at different stages. The obtained samples are ex situ characterized by scanning electron microscopy (SEM), room temperature Van der Pauw–Hall electrical transport and low temperature (13 K) photoluminescence (PL) measurements. The SEM images show clearly the coalescence process. A smooth surface is obtained for a fully coalesced layer. During the coalescence process, the electron concentration ( n ) and mobility ( μ ) vary from 2×1019 cm−3 to 2×1017 cm−3 and 12 cm2/V s–440 cm2/V s, respectively. The PL maxima shift to higher energy and the FWHM decreases to about 4 meV. A correlation between PL spectra and Hall effect measurements is made. We show that the FWHM follows a n 2 / 3 power law for n above 1018 cm−3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call