Abstract
The electronic structure of defects produced by 2.5-MeV electron irradiation and their effect on optical properties of GaN are investigated using photoluminescence (PL) and optically detected magnetic resonance (ODMR) techniques. The electron irradiation is shown to produce, in particular, a deep PL band with a no-phonon line at around 0.88 eV followed by a phonon-assisted sideband. We suggest that this emission is caused by an internal transition between excited and ground state of a deep defect. The excited state is a multiple-level state, as revealed from temperature dependent PL and level anti-crossing experiments. The electronic structure of the 0.88 eV defect is shown to be sensitive to the internal strain in the GaN epilayers. The ODMR studies reveal that the principal axis of the defect coincides with the c-axis of the host lattice and should therefore be either an on-site point defect or an axial complex defect along the c-axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: MRS Internet Journal of Nitride Semiconductor Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.