Abstract
This paper investigates a three-stage supply chain scheduling problem in the application area of aluminium production. Particularly, the first and the third stages involve two factories, i.e., the extrusion factory of the supplier and the aging factory of the manufacturer, where serial batching machine and parallel batching machine respectively process jobs in different ways. In the second stage, a single vehicle transports jobs between the two factories. In our research, both setup time and capacity constraints are explicitly considered. For the problem of minimizing the makespan, we formalize it as a mixed integer programming model and prove it to be strongly NP-hard. Considering the computational complexity, we develop two heuristic algorithms applied in two different cases of this problem. Accordingly, two lower bounds are derived, based on which the worst case performance is analyzed. Finally, different scales of random instances are generated to test the performance of the proposed algorithms. The computational results show the effectiveness of the proposed algorithms, especially for large-scale instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial & Management Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.