Abstract

In this paper, a two-stage supply-chain scheduling problem including manufacturers and distributors will be investigated and modeled. The objective function is to minimize the makespan, which is equivalent to the completion time of the last job to leave the system. A minimum makespan usually implies a good utilization of the machine(s). In this research, serial batching machines do jobs processing and then the jobs will deliver to customers (in the next stage) for further processing. The capacity of each batch is limited. Delivery unit cost of each batch is fixed and independent of the number of jobs in the batch. Processing and setup time of jobs are varying according to jobs types. The setup time is determined according to jobs type within each batch. The problem has been formulated as a mixed integer-programming model. Finally, a lower bound will be provided. Computational experiments demonstrate the performance of new lower band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.