Abstract

AbstractThis study addresses a two-stage supply chain scheduling problem, where the jobs need to be processed on the manufacturer’s serial batching machine and then transported by vehicles to the customer for further processing. The size and processing time of the jobs are varying due to the differences of types, and setup time is needed before processing one batch. For the problem with minimizing the makespan, we formalize it as a mixed integer programming model. In addition, the structural properties and lower bound of the problem are provided. Based on the analysis above, a novel hybrid dynamic programming algorithm, combining dynamic programming and heuristics, is proposed to solve the problem. Furthermore, its time complexity is also analyzed. By comparing the experimental results of our proposed algorithm with the heuristics \(BFF\) and \(LFF\), we demonstrate that our proposed algorithm has better performance and can solve the problem in a reasonable time.KeywordsSupply chain schedulingBatchingDynamic programmingHeuristic algorithm

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.