Abstract

In this paper we consider the following basic problem in polyhedral computation: Given two polyhedra in R d , P and Q, decide whether their union is convex, and, if so, compute it. We consider the three natural specializations of the problem: (1) when the polyhedra are given by halfspaces (H-polyhedra), (2) when they are given by vertices and extreme rays (V-polyhedra), and (3) when both H- and V-polyhedral representations are available. Both the bounded (polytopes) and the unbounded case are considered. We show that the first two problems are polynomially solvable, and that the third problem is strongly-polynomially solvable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.