Abstract

We report on ac transport through carbon nanotube Fabry–Pérot devices. We show that tuning the intensity of the ac gating induces an alternation of suppression and partial revival of the conductance interference pattern. For frequencies matching integer multiples of the level spacing of the system Δ, the conductance remains irresponsive to the external field. In contrast, the noise in the low bias voltage limit behaves as in the static case only when the frequency matches an even multiple of the level spacing, thereby highlighting its phase sensitivity in a manifestation of the wagon-wheel effect in the quantum domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.